Video Exclusives


Michelin Vision concept

Sentury

This forward-looking concept is made from bio-sourced, biodegradable materials, using 3D printing.

Click here to watch the video


Advanced driving simulator

Sentury

The new VDS developed by McLaren Applied Technologies and MTS Systems Corporation can accommodate mechanical HIL technology, which offers the potential for real-time integration of difficult-to-model hardware – such as tires – directly into simulations

Click here to watch the video


The Jaguar XJ220 legend lives on

Sentury

Experts at Bridgestone and Don Law reveal more on the development regime behind the new bespoke XJ220 rubber

Click here to watch the video


Industry Opinion

« back to blog listings

Clever concepts

Symmetry in various forms occurs in nature and in man-made products. It permeates disciplines ranging from the visual arts and music to biology and the physical sciences. Tires themselves are rotationally symmetric bodies of revolution. Birds, butterflies and human beings possess so-called bilateral symmetry dividing their shapes into left and right halves that are mirror images of one another – although internal organs are usually arranged asymmetrically. Bilateral symmetry is easily recognized and is thought to have evolved in animals because it conferred advantageous movement – known as ‘directed locomotion’ with the potential for streamlining. Most automobiles, airplanes and ships are also outwardly symmetric about their vehicle pitch plane.

Tire tread patterns can exhibit various types of symmetry depending on the product line. The most important class, known as combined point and rotational symmetry, is used on the vast majority of car, truck and SUV tires. Importantly, tires with tread patterns featuring this two-fold symmetry can be mounted in multiple ways on a vehicle (left or right; front or rear) – a convenience preferred by most consumers. Geometrically, if the tire tread pattern remains invariant after a 180° rotation about a fixed point, the pattern is both point and rotationally symmetric. Some everyday non-automotive objects also possess this dual symmetry, including the face cards in a deck of cards. In other words, like most tread patterns, these cards remain the same when turned upside down.

The two-dimensional footprint of a directional tire exhibits so-called line or mirror symmetry – the planar analog of bilateral symmetry. Directional tread patterns, often used on high-performance tires, feature V-shaped ribs and grooves symmetrically disposed shoulder-to-shoulder about the centerline of the tread. Such imagery is characteristic of line symmetry; it infers that each half of a 2D pattern is a reflection of the other. Directional tires with their striking tread patterns are designed to roll one way only, and because of this limitation remain niche products in the automotive market. The medial line of a tire cross-section also exhibits mirror symmetry.

Asymmetric tire tread patterns possess no point, rotational or mirror symmetry and have a limited, but growing, market-driven appeal. The outboard portion of such treads is generally ‘blockier’ to enhance dry cornering, while the inboard region features smaller blocks with grooves and sipes that promote wet traction. Such tires are nominally side-bound – that is, designed to operate on either the left- or right-hand side of a vehicle. The Michelin XAS was the first tire (1965) to purposefully feature tread pattern asymmetry and the first production tire to operate at 130mph (210km/h). Interestingly, the locomotion pattern of the human foot served as the inspiration for the design of the XAS.

In contrast, certain asymmetries known as conicity and ply steer, among others, unavoidably occur in radial tire lateral force behavior. These inherent offsets arise due to manufacturing imprecision and the stacking sequence and orientations of the plies, respectively. These side forces perpendicular to the wheel plane are negligibly small in bias ply tires and usually dismissed as non-issues. In radial constructions, these steering-like forces exist even at zero slip and camber angles. Ply steer, or pseudo-slip, mainly results in vehicle ‘dog tracking’ while conicity, or pseudocamber, produces torque at the steering wheel – known as ‘pull’. Fortunately, ply steer is a deterministic variable that can be determined at the design stage of tire development, while conicity is a random factory variable that is measured post-production using a tire uniformity machine.

Asymmetry can be purposefully exploited in some tire constructions for improved tire-vehicle behavior. For example, steel belts have been intentionally positioned slightly off-center during tire assembly to induce a consistently positive or negative bias in conicity values; similar results can be achieved by making tread depths slightly deeper on one shoulder than the other. These unsymmetrical features allow for balanced positioning of such tires on vehicle front axles during auto assembly operations, which mitigate steering wheel pull while driving. Furthermore, the patent literature dealing with asymmetrical tire constructions is replete with concepts never commercialized.

After spending portions of my career trying to understand, eliminate or control such nuanced tire design concepts involving symmetry and asymmetry, many of my past efforts could prove irrelevant in a future world of autonomous vehicles lacking discerning drivers.

 

Comments:

There are currently no comments.

If you would like to post a comment about this blog, please click here.
Read Latest Issue

Read Latest Issue

Read Latest Issue

Web Exclusives

Goodyear to supply British Truck Racing Championship
Challenges tackled in truck race tire development could lead to the creation of advanced new road tire technologies
Read Now

Interview: Terry Gettys, executive VP of R&D, Michelin Group
The executive VP of R&D on how supplier collaborations are enhancing materials development and why confidentiality is important for business
Read Now

Original equipment development at Giti
Giti experts reveal how the company works in close collaboration with vehicle OEMs to develop bespoke original equipment rubber
Read Now

Conference interview: Mika Lahtinen, Nynas
The Nynas senior advisor and former Nokian Tyres winter tire expert reveals how environmental legislation has impacted on the production of popular tire oils
Read Now

Yokohama unveils iceGuard iG65
Extensive simulation has enabled the development of a special pin shape for improved on-ice performance
Read Now


Supplier Spotlight

Supplier SpotlightWe are building a list of leading suppliers covering all aspects of the tire industry. Want to see your company included? Contact olivia.campbell@ukimediaevents.com for more details.

فروشگاه اینترنتی فروشگاه اینترنتی سیستم همکاری در فروش کانال تلگرام چت روم دانلود فیلم فروشگظ;ه اینترنتی

Submit your industry opinion

Industry BlogDo you have an opinion you'd like to share with the tire technology community? We'd like to hear your views and opinions on the leading issues shaping the industry. Share your comments by sending up to 500 words to rachel.evans@ukimediaevents.com

Submit Your Recruitment Ad

Recruitment AdTo send us your recruitment advertising or to receive information on placing a banner please email olivia.campbell@ukimediaevents.com